

## **FEATURE LIST**

|            | Features                                            | Advantages                                                                                                                                                                |
|------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTERFACE  | Python 3.6 interface for easy integration           | Design your pipelines, scenarios, validations using a simple industry standard scripting<br>language                                                                      |
|            | Aerial –nadir & oblique– and terrestrial<br>imagery | Process images taken from any aerial, terrestrial, manned, or unmanned platform                                                                                           |
|            | Aerial and terrestrial images in .jpg<br>format     | Use images acquired with variety of cameras - from consumer-grade to highly specialized cameras                                                                           |
|            | Large frame images                                  | Process images with resolution >100Mpx                                                                                                                                    |
|            | Images without IMU                                  | Process image datasets with no IMU                                                                                                                                        |
|            | Images without geolocation                          | Process image datasets with no geolocation                                                                                                                                |
| INPUTS     | Multi-camera support in the same project            | Create a project using images from different cameras and process them together                                                                                            |
|            | RTK + IMU data support                              | Get faster and more robust calibration when using the Accurate Geolocation Pipeline                                                                                       |
|            | Camera rig support                                  | Process images using known rig relatives from multiple synchronized cameras                                                                                               |
|            | Ground Control Points (GCPs)                        | Import GCPs to improve the absolute accuracy of a project                                                                                                                 |
|            | Exposed camera parameter interface                  | Manage your camera parameters                                                                                                                                             |
|            | Known or custom reference coordinate system         | Select EPSG code from known coordinate systems or define your own local system                                                                                            |
|            | Processing templates                                | Choose between preset templates for the best processing options (nadir, oblique) or make custom option modifications. Currently limited to calibration and densification. |
|            | Rapid quality check                                 | Automatically classify the RGB dense point cloud into four groups: ground road surfaces, hig<br>vegetation, buildings and human-made objects                              |
|            | Camera self-calibration                             | Optimize internal camera parameters, such as focal length, principal point of autocollimation and lens distortions                                                        |
|            | Rolling shutter effect correction                   | Correct the warp of images taken with rolling shutter cameras (like GoPro, DJI Phantoms, etc<br>to maintain accuracy even when flying fast and low                        |
|            | Automatic point cloud densification                 | Produce a dense and detailed 3D point cloud, which can be used as a basis for DSM and 3D mesh                                                                             |
|            | Automatic point cloud filtering & smoothing         | Use presets for point cloud filtering and smoothing options                                                                                                               |
|            | Machine-learning point cloud classification         | Automatically classify the RGB dense point cloud into five groups: ground road surfaces, high vegetation, buildings and human-made objects                                |
|            | Automatic DTM/DEM extraction                        | Remove above-ground objects from DSM and create a bare-Earth model                                                                                                        |
|            | Automatic brightness and color correction           | Compensate automatically for change of brightness, luminosity and color balancing of image                                                                                |
|            | Processing area definition                          | Draw area to generate results inside specific boundaries                                                                                                                  |
|            | Custom number of keypoints                          | Set the number of keypoints to filter noise or speed up processing                                                                                                        |
|            | Multiprocessor CPU                                  | Increase the processing speed by leveraging the power of CPU cores and threads                                                                                            |
|            | Radiometric processing and calibration              | Calibrate and correct the image reflectance, taking the illumination and sensor influence into consideration                                                              |
|            | AutoGCPs                                            | Let engine find and mark your GCPs on images without any human intervention required                                                                                      |
|            | Standard QA report                                  | Use our predefined report format and assess the accuracy and quality of projects                                                                                          |
|            | Radiometric adjustment interface                    | Make the vegetation indices more reliable and accurate by applying radiometric corrections                                                                                |
|            | Reflectance map                                     | Generate an accurate Reflectance map and the preferred resolution as a basis of index map                                                                                 |
| RADIOMETRY | NDVI map                                            | Generate singleband and NDVI maps based on pre-defined formulas without user intervention                                                                                 |
|            | Index formula definition                            | Create and save your own formulas choosing among each input band and generate custom index maps                                                                           |
|            |                                                     | 11                                                                                                                                                                        |

1|2

|         | 2D output results:   | Google tiles export in .kml and .html output formats               |     |
|---------|----------------------|--------------------------------------------------------------------|-----|
|         |                      | Index maps (Thermal, DVI, NDVI, SAVI, etc.) in GeoTIFF             |     |
|         |                      | Prescription maps in .shp format                                   |     |
|         |                      | Nadir orthomosaics in GeoTIFF output format                        |     |
|         |                      | Orthomosaics from user-defined orthoplane in GeoTIFF output format |     |
|         | 2.5D output results: | Nadir DSMs in GeoTIFF format                                       |     |
|         |                      | Nadir DTMs in GeoTIFF format                                       |     |
| OUTPUT  | 3D output results:   | Full 3D textured mesh in .ply, .dxf, and .fbx format               |     |
| RESULTS |                      | Full 3D textured mesh in .obj format                               |     |
|         |                      | Tiled Level-of-detail (LoD) mesh in SLPK format                    |     |
|         |                      | Tiled Level-of-detail (LoD) mesh in OSGB format                    |     |
|         |                      | Point cloud in .las, .laz output format                            |     |
|         |                      | Point cloud in .ply .xyz output format                             |     |
|         |                      | Contour lines in .shp, .dxf, .pdf format                           |     |
|         |                      | Classified point cloud in .las and .csv format                     |     |
|         |                      | User-defined vector objects in .dxf, .shp, .dgn, and kml format    |     |
|         |                      |                                                                    | 212 |



CPU: Quad-core or hexa-core Intel i7/ i9/ Xeon, AMD Threadripper

**GPU:** GeForce GTX 1070 and up (compatible with OpenGL 3.2)

HD: Solid state drive (SSD)

**RAM:** 8GB RAM (or more)



**OS:** Windows (64 bits) Ubuntu 18.04 (64 bits)

